Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
2.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
3.
PeerJ ; 8: e9485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714662

RESUMO

Discrete, ephemeral natural phenomena with low spatial or temporal predictability are incredibly challenging to study systematically. In ecology, species interactions, which constitute the functional backbone of ecological communities, can be notoriously difficult to characterise especially when taxa are inconspicuous and the interactions of interest (e.g., trophic events) occur infrequently, rapidly, or variably in space and time. Overcoming such issues has historically required significant time and resource investment to collect sufficient data, precluding the answering of many ecological and evolutionary questions. Here, we show the utility of social media for rapidly collecting observations of ephemeral ecological phenomena with low spatial and temporal predictability by using a Facebook group dedicated to collecting predation events involving reptiles and amphibians in sub-Saharan Africa. We collected over 1900 independent feeding observations using Facebook from 2015 to 2019 involving 83 families of predators and 129 families of prey. Feeding events by snakes were particularly well-represented with close to 1,100 feeding observations recorded. Relative to an extensive literature review spanning 226 sources and 138 years, we found that social media has provided snake dietary records faster than ever before in history with prey being identified to a finer taxonomic resolution and showing only modest concordance with the literature due to the number of novel interactions that were detected. Finally, we demonstrate that social media can outperform other citizen science image-based approaches (iNaturalist and Google Images) highlighting the versatility of social media and its ability to function as a citizen science platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA